

Path to Achieve Net-Zero Emissions by 2050: The Effects of Inhibitors on Farm Financial and Environmental Performance

Obed Sappor, Aaron De Laporte, Azeem Tariq, Alfons Weersink, Claudia Wagner-Riddle

Department of Food, Agriculture and Resource Economics, University of Guelph, ON.

BACKGROUND

RESULTS

- The use of fertilizers has significantly increased in recent years, resulting in improved crop yields (Sutton et al., 2011).
- However, this has raised environmental concerns due to significant nitrogen loss to the environment, impacting greenhouse gas emissions.
- Agriculture is a large source of greenhouse gas emissions, generating approximately 10% of Canada's total GHG emissions annually since 1990 (Agriculture and Agri-Food Canada, 2021).
- Canada is therefore targeting a 30% reduction in greenhouse gas emissions from fertilizers in agriculture, utilizing 4R nutrient Stewardship including inhibitors.

OBJECTIVE

• To evaluate the economic effectiveness of inhibitors as a mitigation strategy for reducing greenhouse gas emissions from agriculture.

METHODOLOGY

- Employed the DNDCv.CAN model to simulate 30 years of weather data to derive corn yields and N_2O emissions under different UAN fertilizer rate and inhibitor use scenarios.
- Crop revenue is calculated from simulated yields and OMAFRA price data, while costs are derived from OMAFRA corn enterprise budgets.
- Net returns is estimated by subtracting farm costs from crop revenue.
- Estimated and compared per-hectare net profit with and without inhibitors to evaluate economic feasibility and emissions mitigation strategy.

ios

Table 1: Fertilizer Rate and Inhibitor Scenarios for Highest Simulated Corn Yield Returns by Year

Years 1

1992

1993 1994

1995 1996

2001

2002

2003 2004

2004 2005 2006

2011

2012

lighest Returns (\$/ha)	Associated Rate-Inhibitor Scenar
985	100 without inhibitor
1497	100 without inhibitor
1597	120 without inhibitor
1282	150 without inhibitor
1216	120 without inhibitor
1554	100 without inhibitor
1499	120 without inhibitor
981	150 without inhibitor
1293	120 without inhibitor
1500	100 without inhibitor
1512	120 without inhibitor
978	150 without inhibitor
1479	150 without inhibitor
1462	100 without inhibitor
1391	120 without inhibitor
948	150 without inhibitor
719	100 without inhibitor
1480	120 without inhibitor
1493	150 without inhibitor
1402	120 without inhibitor
1444	150 without inhibitor
1536	120 without inhibitor
1436	150 without inhibitor
1565	150 without inhibitor
1439	150 without inhibitor
1600	100 without inhibitor
1451	150 without inhibitor
1282	150 without inhibitor
1502	150 without inhibitor
1589	120 with inhibitor

Figure 4. Elora Research Station

DISCUSSION

- Inhibitors increased corn yields by up to 188 kg/ha at lower N rates.
- Inhibitors decreased N_2O emissions by roughly 9-21%.
- On average, the most profitable N rate for maximizing returns was 150 kg/ha.
- Overall, inhibitors show agronomic and environmental gains but lack clear economic benefits alone. Optimizing both inhibitor and fertilizer use levels could balance efficiency and environmental care.

IMPLICATIONS

- Findings underscore the complexity of nitrogen management and the need for more coordinated research across disciplines to develop integrated fertilizer/inhibitor recommendations that consider both yield and environmental objectives.
- Potential policy options include providing subsidies for eco-efficient technologies like inhibitors, implementing nitrous oxide emission penalties, and tying inhibitor requirements to fertilizer rate thresholds above optimal agronomic levels.

ACKNOWLEDGEMENT

 I appreciate Alfons Weersink, Aaron De Laporte, Azeem Tariq, and Claudia Wagner-Riddle. Their work ethic and analysis of emissions inhibitors has provided great insights.

REFERENCES

Agriculture and Agri-Food Canada. (2022). *Discussion* document: Reducing emissions arising from the application of nitrogen fertilizer.

Food and Agriculture Organization of the United Nations. (2019). *Fertilizer use to surpass 200 million tonnes in 2018*.