

IMPROVE LIFE.

Introduction:

- This study uses a sample of Canadian parcel level farmland values to estimate Ricardian impacts of climate change on agriculture.
- The Ricardian approach was first proposed by Mendelson, Nordhaus, and Shaw (1994) as an alternative to crop-specific approaches.
- The Ricardian approach applies a hedonic property model to farmland values and includes climate measures as key explanatory variables.

Image adapted from Mendelsohn et al (1994).

Research Contributions:

1. Publish the first Canadian Ricardian estimates using a pooled county-fixed effects model.

- Almost all previous Ricardian studies have used a single year cross section of aggregated county level data.
- Few studies have used granular spatial data on farmland values (Barielle & Chakir, 2023; Fezzi & Bateman, 2015; Schlenker et al. 2006; Weber & Hauer 2003).

2. Control for potential omitted variable bias that occurs when climate is correlated with future urban development.

- Future urban development influences the price of farmland today.
- Dataset includes parcels where urban conversion is eminent and parcels where conversion is distant, potentially biasing the estimates (Ortiz-Bobea, 2020).

Assessing the effect of climate change on Canadian farmland values: A Ricardian Approach

Nicholas Bannon, Christopher Kimmerer, B. James Deaton Department of Food, Agriculture, and Resource Economics, University of Guelph

Data:

Most studies have used county level averages for farmland values and all explanatory variables – including climate.

FCC mean centres by Census Division Cencus Division Centroids Mean FCC • FCC parcels

- This study uses parcel level farmland values provided by Farm Credit Canada (FCC) - each datapoint is composed of real market transactions between 2017-2022.
- Historic and forecasted climate data were accessed from Adapt West and matched to the centroid location of each parcel
- Other control variables include soil quality, surrounding area population density and median total income.

Empirical Approach

- The first stage estimates the marginal effect of climate on farmland values using a hedonic property model.
- A spatial error model is used to allow for spatial correlation between observations (Conley, 1999).

 $\ln(LV_{i,m,p}) = \beta' C_{i,m,p} + \theta' F_{i,m,p} + \tau' N_{m,p} + P_{FE} + M_{FE} + u_{i,m,p}$

• The second stage calculates the average predicted change in farmland values resulting from climate change for each observation and corrects for bias in log predictions (Newman, 1993; Wooldridge 2009).

 $\Delta LV_i = (Predicted Future Value_i - Predicted Current Value_i)$

Kilometres

Marginal Effects o

Temperature (°C) January April July October

Aggreg

Precipitation (mm) January April July October

Aggrega

Proximity Variable

Aggregate Impact (SSP2.4-5 2041-2070)

Per Acre Price Predicted Per Acre Price 95% Confidence Interva Predicted Future Price 95% Confidence Interva

Per Acre Change (2041-2

Annualized Impacts (5% Percent Change

Proximity Variable

Conclusions:

- Canadian farmland values.
- impacts.
- decisions.

of Climate on Farmland Values			
Census Division FE			
	(1)	(2)	
	-0.28%	0.49%	
	22.68%	23.97%	
	5.48%	0.78%	
	-11.93%	-6.93%	
ate	15.96%	18.31%	
)			
	0.15%	0.21%	
	1.10%	1.22%	
	-0.29%	-0.01%	
	-0.57%	-1.12%	
ate	0.38%	0.29%	
		Yes	

	Census Division FE		
	(1)	(2)	
	\$11 <i>,</i> 951	\$11 <i>,</i> 951	
2	\$12,756	\$12,811	
al	(\$12,380, \$13,133)	(\$12,430, \$13,192)	
	\$22 <i>,</i> 489	\$23,413	
al	(\$21,934, \$23,044)	(\$22,821, \$24,005)	
2070)	\$9,732	\$10,602	
6)	\$487	\$530	
	76%	83%	

Yes

Climate change is expected to have a large positive impact on

The inclusion of a proximity variable increases the positive

These results can help inform climate related risk management