Economic implication of a Wildfire Monitoring Satellite For Canada Including Water Treatment and Infrastructure cost

Susan Subedi^{*1}, Dan McKenney², Alfons Weersink¹, Getu Hailu¹ ¹Department of Food, Agricultural and Resource Economics (FARE), University of Guelph ² Great Lakes Forestry Center, Natural Resources Canada *Presenting author, Email: subedi@uoguelph.ca

1. Introduction

- Frequency of wildfire has increased in Canada in the past few years.
- Wildfire have a significant capacity to impact watershed conditions.
- Surge in wildfire has led to notable increase in various costs across multiple industries.
- Response to this imperative need, the WildFireSat project has been developed. Thorough assessment of its economic implications is crucial for understanding its potential benefit.

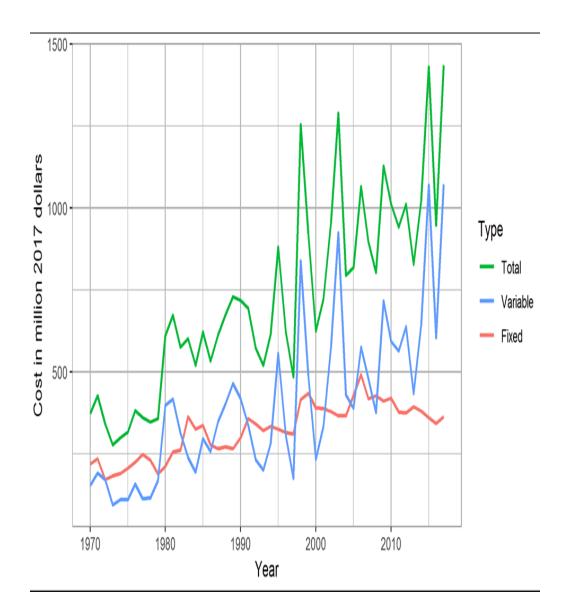


Figure 1.1: Cost of wildland protection in Canada from 1970 to 2017 (in million 2017 Canadian dollars)(Source: NRCan, 2017)

Research Question

To identify and quantify the cost related to wildfire including water, suppression and evacuation cost, as well as losses in timber and property at a coarse spatial scale and integrate these costs into the existing wildfire satellite economics assessment models.

2. Data

We obtained data from the following sources:

- Monthly CMI (Climate Moisture Index) values obtained from different climate stations across Canada.
- Future CMI data was calculated based on CMIP5 data
- Forest area burned data obtained jointly from Natural Resources Canada, National Fire Data based and Canada One Water (CoW).
- Suppression cost data obtained from Canadian Interagency Forest Fire Center.
- Water cost data obtained from Statistics Canada.
- Evacuation cost data obtained from Canadian Forest Service.
- Satellite cost data obtained from Canadian Space Agency.
- Property & Structure loss data obtained from Insurance Bureau of Canada
- Data on timber loss was calculated based on the wildfire emission data provided by the Canadian Forest Service Carbon Accounting Team at Pacific Forestry Center.

3. Empirical Strategy

• Developed statistical model for each province: $\ln(\mathbf{W}_{i}) = \beta_{0} + \beta_{1} * CMI_{i} + \varepsilon_{i} \quad (1)$

 W_i = natural log of the yearly burned area in watershed in year i

• Developed models for relationships between areas burned and wildfire costs:

$$\ln(S_i) = \beta_0 + \beta_1 \ln(W_i) + \varepsilon_i$$
 (2)

 S_i = natural log of the variable suppression cost in year i

$$\ln(C_i) = \beta_0 + \beta_1 \ln(W_i) + \varepsilon_i \qquad (3)$$

 C_i = natural log of the cost of water treatment and infrastructure cost in year i

$$\ln(\mathbf{T}_{i}) = \beta_{0} + \beta_{1} \ln(\mathbf{W}_{i}) + \varepsilon_{i} \qquad (4)$$

 T_i = natural log of the timber loss in year i $\ln(E_i) = \beta_0 + \beta_1 \ln(W_i) + \varepsilon_i \quad (5)$ E_i = natural log of the evacuation cost in year i

ln(

Table 1.1

Province

Alberta British C Saskatch Manitoba Quebec Ontario

Table 1.2

Provinc

Alberta British (

Saskatch

Manitob Quebec

Ontario

Provinc

Alberta **British** Saskatc

Manitol Quebec Ontario

3. Empirical Strategy(cont'd)

$$(\mathbf{P}_{i}) = \beta_{0} + \beta_{1} \ln(\mathbf{W}_{i}) + \varepsilon_{i}$$
 (6)

 P_i = natural log of the property loss in year i,

• Utilized the future CMI projection combination with Eq(1)

• Computed estimates for area burned in each province from 2021 to 2050.

Employed area burned estimates in Eq(2) to (6)

Aggregated the provincial-level result.

Decomposed total satellite cost into annual

quivalent lump sum amount using:

Total cost * Discount rate

 $1-(1+Discount rate)^{Life span}$

• Annual total future wildfire cost will be juxtaposed against the anticipated annual satellite cost

4. Results

1 Provincial CMI and Area burned linear regression model results	1 Provincial	CMI and Area	burned linear	regression	model results
---	--------------	--------------	---------------	------------	---------------

e	$\boldsymbol{\beta}_0$	$\boldsymbol{\beta}_1$	F-stats	R ²	p-value	
Columbia	8.9068 9.9720	-0.1537 -0.1514	8.804 23.53	0.155 0.31	0.004** 0.000***	
hewan	9.756	-0.0532	1.135	0.0353	0.29	
ba	9.615 11.22	-0.232 -0.1665	10.47 6.155	0.287 0.1496	0.003** 0.018*	
	9.8115	-0.190	14.01	0.25	0.000***	•

ce	$\boldsymbol{\beta}_0$	$\boldsymbol{\beta}_1$	F-stats	R ²	p-value
l	4.58	0.007	0.021	0.003	0.88
Columbia	3.900	0.0286	0.652	0.098	0.45
chewan	4.096	-0.022	8.47	0.585	0.027*
ba	3.045	0.0404	0.475	0.073	0.516
C	5.245	-0.004	0.369	0.058	0.565
)	5.56	0.004	0.059	0.009	0.815

Table 1.3 Provincial Area burned, and suppression cost linear regression model result

*
*
*
*
*

4. Results (cont'd)

Table 1.4 Provincial Area burned, and suppression cost linear regression model results

Province	$\boldsymbol{\beta}_0$	$\boldsymbol{\beta}_1$	F-stat	R ²	p-value
Alberta	-0.05	1.33	73.78	0.732	0.000***
British Columbia	-5.35	1.674	145.3	0.843	0.000***
Saskatchewan	-6.86	1.78	285.8	0.913	0.000***
Manitoba	-6.71	1.61	193.8	0.902	0.000***
Quebec	-10.02	1.90	105.8	0.796	0.000***
Ontario	-6 08	1 67	190.2	0 879	0 000***

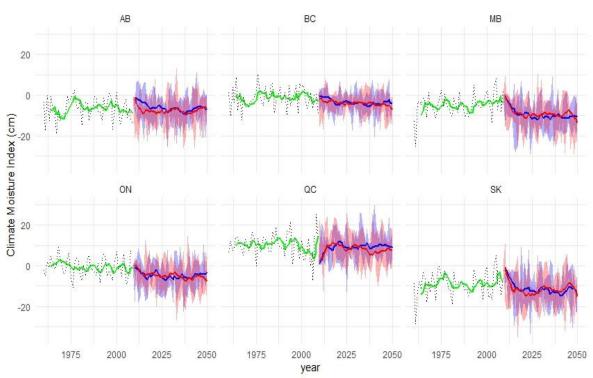


Figure 1.2: Historical and future CMI under RCP2.6 and 8.5 for all GCMs

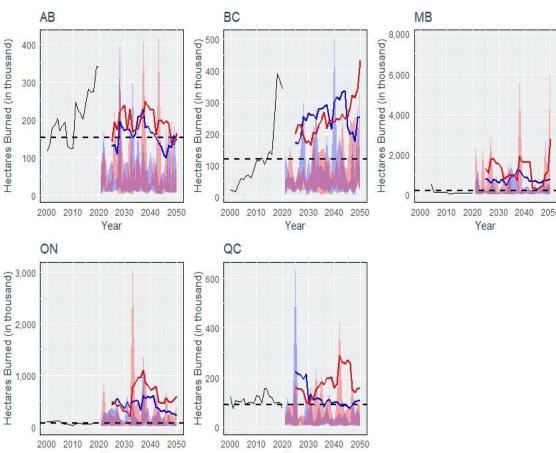


Figure 1.3: Area burned as forecast under RCP2.6 and 8.5 for all GCMs **5.** Next Steps

- Carry out regression analysis for evacuation cost and structure loss and forecast.
- Forecast the suppression cost and timber loss
- Carry out cost-benefit analysis of possible cost savings in relation to investments into the satellite system.