

INTRODUCTION

The Need to Reduce Methane Emissions:

- Canada's 'net zero' emissions target by 2050.
- 71% of Canada's total agricultural methane emissions comes from beef production (Government of Canada, 2022).
- Alberta's feedlot sector is responsible for a significant share province's agricultural methane emissions, of the representing high-density, localized methane 'hotspots' (McGinn et al., 2008).
- The agricultural sector is the largest source of unregulated and unpriced GHG emissions in the country (Cooper et al., 2013).
- Reducing methane emissions is not only crucial for the environment, but can also improve efficiency in beef production, reducing the loss of feed energy (ABP, 2016).

OBJECTIVES

First Objective:

Identify effective methane abatement strategies:

- Review literature on methane reduction in feedlot cattle operations.
- Ensure strategies don't impair cattle productivity.

Second Objective:

Explore and evaluate the cost-effectiveness of these strategies:

- Find the cost of implementation and analyze economic viability.
- Construct marginal abatement cost curves to inform policy.

Reduction in CH Emissions (tCO2eq per year per head)

Estimating the Marginal Cost of Methane Abatement for Representative Feedlot Operations in Canada

Joren Johnson, Brent Swallow, Xiaoli Fan

University of Alberta, Department of Resource Economics and Environmental Sociology

METHODS AND MARGINAL ABATEMENT COST CURVE DEVELOPMENT

Selection of Measures:

- Measures that reduce absolute emissions without negatively impacting beef production
- Measures that increase beef production without increasing emissions.
- Gathered reported percent reductions in enteric mitigation strategies, along with their cost of implementation from existing literature.

Bottom-up Engineering Approach:

- Constructed MACCs using regional activity data, not direct emissions measurement.
- Focused on technical potential of each mitigation measure.
- Evaluated effectiveness incrementally by comparing current practice (status quo) plus specific mitigation measures.
- MACC created as a set of discrete bars ranking mitigation measures based on increasing cost per unit of emissions abated.

TECHNICAL FEASIBILITY OF MITIGATION OPTIONS IN ALBERTA

Strategy	CH4 Reduction Potential (g/d)	Expected Availability	Feasibility of Implementation
Breeding for Low RFI	Low to Medium (15-28%)	Immediate	Industry wide collaboration. Protocols needed to verify genetic efficiency of incoming cattle. Cost-effective.
Feed Management	Low -Medium (15-23%)	Immediate	Feasible, but highly dependent upon weather and environmental factors.
Ionophores	Low (5-15%)	Immediate	Confined beef production.
Lipid Supplementation	Medium to High (17-33%)	Immediate	Feasible for cattle fed diets. Can be expensive.
3-NOP	High (45-85%)	Immediate, approved in Canada as of 2023	Highly applicable for beef feedlots. Difficult for grazing. Financial incentives required.
Red Seaweed	High (60-90%)	Available, but not widespread	Highly applicable for beef feedlots. Needs global scale production and Regulatory acceptance. Financial incentives required.

Leading Strategies::

- 3-nitrooxypopanol (3-NOP) and Red Seaweed
- Significant methane reduction potential but prohibitively
- expensive in both MACC scenarios. • Major Economic trade-off for producers.

Cost-Effective Solutions:

Ionophores.

Incentives for Scalability and Economies of Scale:

- seaweed).
- potential.

Collaborative Engagement:

The key to success will lie in the collaborative engagement of all stakeholders, alongside continued innovation and research to improve the cost-effectiveness of these mitigation strategies.

MAIN CONCLUSIONS

Low Residual Feed Intake (RFI) Breeding, Feed Management, and

• Cost-effective with the potential of financial gains, aligning with both economic and environmental goals.

POLICY IMPLICATIONS

• Governments can support innovation and scalability (e.g. scaling up production of feed additives like 3-NOP and red

• Hybrid Market Based Approach: Tax and subsidy policies that recycle emissions tax revenue back to the producer to subsidize adoption of more expensive technologies with higher abatement

• MACCs can guide the pricing of offsets (e.g. establishing the price for carbon credits) aligning the financial incentives with the actual cost for reducing emissions.

	REFERENCES
w RFI Selection)	
ment	 Alberta Beef Producers (ABP). 2016. "Alberta Beef Producers Policy Position on Climate Leadership." albertabeef.org. Accessed March 4, 2024. https://www.albertabeef.org/files/site- content/Q8o9L12dqGqLz5rzT6z7Q01okaBBArwPf8R4 AUDW.pdf. Cooper, Mark H., Jonathan Boston, and John Bright. 2013. "Policy Challenges for Livestock Emissions Abatement: Lessons from New Zealand." Climate Policy 13 (1): 110–33. https://doi.org/10.1080/14693062.2012.699786. Government of Canada. 2022. "Faster and Further: Canada's Methane Strategy." Accessed December 7, 2023. https://www.canada.ca/en/services/environment/weather/ climatechange/climate- plan/reducing-methane- emissions/faster-further-strategy.html#toc9. MacLeod, M. et al. (2015), "Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review", OECD Food, Agriculture and Fisheries Papers, No.89, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jrvvkq900vj-en.