
WHAT IS THE OPTIMAL RATE AND N₂O MITIGATION POLICY FOR NITROGEN APPLICATION IN SASKATCHEWAN CANOLA?

Michelle Ross, University of Saskatchewan

INTRODUCTION	METHODS	POLICY IMPLICATIONS	
 The Canadian agricultural industry accounts for 10% of national annual GHG emissions with a major contributor being N₂O from N fertilizer application^[1]. 	 The types of data used in the canola production function, estimation of the private optimal N rate and N₂O abatement cost include: Management^[8] Weather^[9] Variety^[10] Price^{[11][12]} Emission^[13] 	 There are vastly different N₂O emissions factors within Canada (see Table 2) which suggests very different rates of Pigouvian taxation per unit of N applied across ecoregions. 	
 The Government of Canada has set a national target to reduce absolute levels of 	 The management data set is producer reported field level data (2011-2019) from Saskatchewan Crop Insurance Corporation (SCIC) Figure 3 Grain risk zone regions 	 Regulation to reduce N fertilizer rates by 	

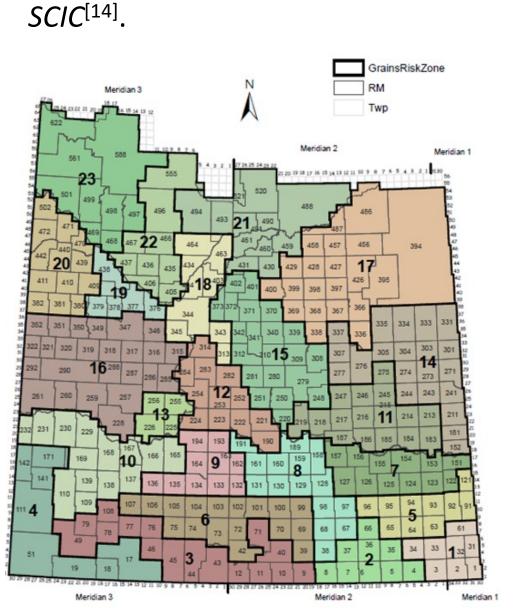
Regulation to reduce N fertilizer rates by 30% would result in net social welfare losses for canola cropping systems in Saskatchewan (see Figure 4B).

- GHG emissions from fertilizer application by 30% from 2020 levels by the year 2030^[1].
- Over the years 2005-2019, fertilizer use has increased by 71% which has been driven by increased N fertilizer use in Western Canada^[1].

Figure 1 Canada's Direct and indirect N₂O emissions from synthetic fertilizer application from 2005 to 2019^{[1][2]}.

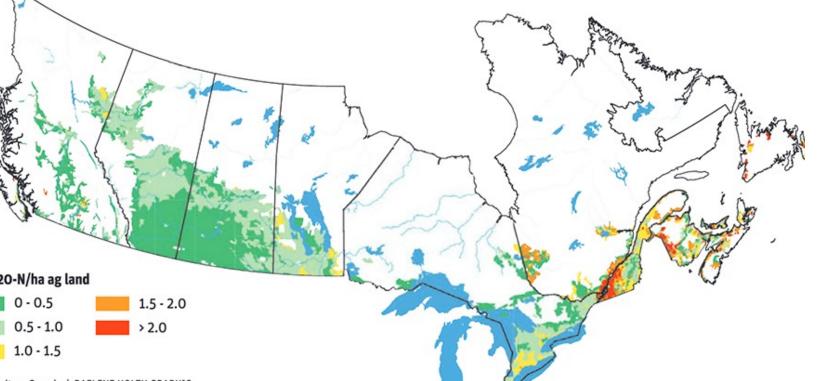
- Increased N fertilizer use has contributed to record crop production but has also resulted in N₂O emissions increasing by 54% over the years 2005-2019^[2] (see Figure 1).
- Canola is a high N use crop with growing demand for edible oil, seed, meal and biodiesel products^[3] posing a challenge to

- with over 47,059 observations across 23 grain cropping risk zones of Saskatchewan (see Figure 3).
- A quadratic canola production function with fixed effects was estimated where yield is a function of variable inputs, management and agro-ecological factors (see Table 1).


Table 1: Independent variables in canola production model.

Variable Inputs	Management Factors	Agro-Ecological Factors
Nitrogen	Previous Crop	Growing Season Precipitation
Phosphorous	Variety	3yr Avg Precipitation
Potassium	Manager	Risk Zone
Sulphur		Soil Class
Fungicide		Year

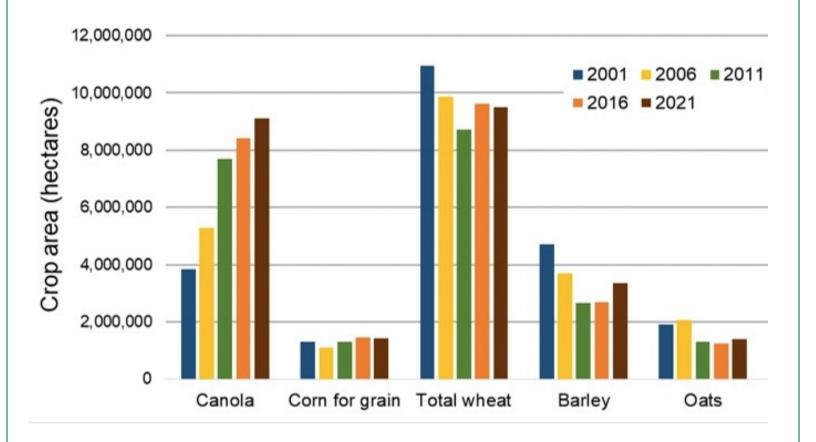
The N₂O Abatement cost from N application was calculated using direct emission estimates for the black and brown soil zones in Saskatchewan (see Table 2 and Figure 4).


Table 2: Canada's direct GHG emission factorsper tonne of applied N fertilizer^[13].

Ecoregion	N ₂ O-N (kg)	CO ₂ eq. (t)
Black soil zone	3.3	1.545
Brown soil zone	1.60	0.749
Eastern Canada	21.1	9.88

of Saskatchewan as classified by

Figure 4 Indirect and direct N₂O emissions from synthetic fertilizer application in 2018^{[1][2]}.

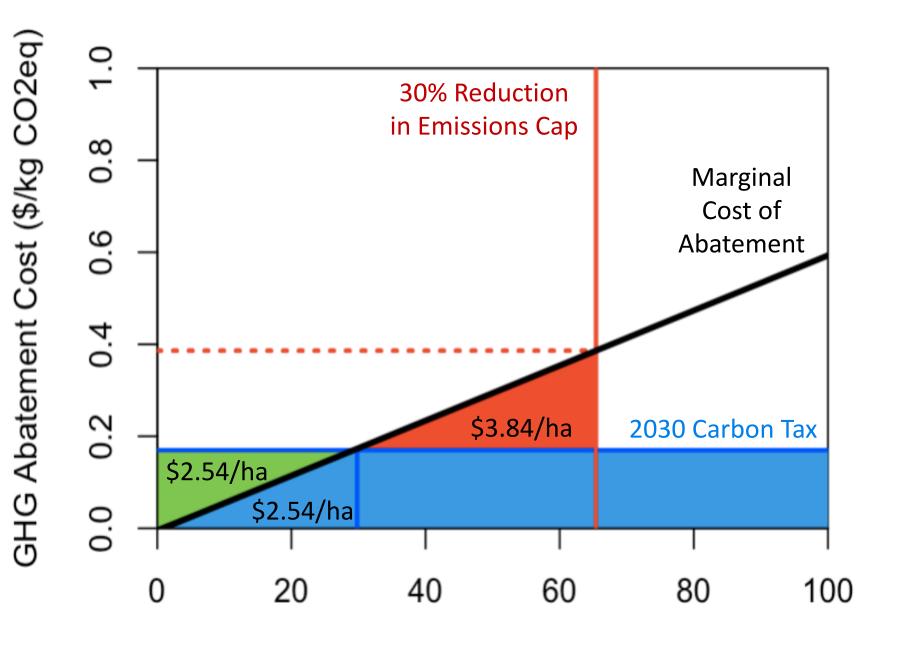


heterogeneity in Given the farming practices and emissions factors, focusing on 4**R**′s Nutrient Stewardship, the of agronomic research and extension to nitrogen management improve and optimize fertilizer use are opportunities to reduce emissions.

REFERENCES

- ^[1] Government of Canada. (2022). *Discussion Document: Reducing emissions arising from application of fertilizer in Canada*. Retrieved May 2022, from https://agriculture.canada.ca/en/about-our
 - department/transparency-and-corporate-reporting/publicopinion-research
- ^[2] Environment and Climate Change Canada. (2022). National Inventory Report 1990-2020: Greenhouse Gas Sources and Sinks in Canada.
- ^[3]Harker, K., O'Donovan, J., Turkington, T., Blackshaw, R., Lupwayi, N., Smith, E., . . . McLaren., a. D. (2011). High yield No-till Canola Production on the Canadian Prairies. *Canadian Journal of Plant Science*, 92:221-33.
- ^[4] Statistics Canada. (2018). Saskatchewan remains the bread basket of Canada. Retrieved March 2022, from https://www150.statcan.gc.ca/n1/pub/95-640x/2016001/article/14807-eng.htm

reducing fertilizer application emissions.


Figure 2 Changes in field crop area between 2001 and 2021 in Canada ^[1].

- Canola production has risen rapidly in Canada since 2001 (see Figure 2) and Saskatchewan alone accounts for over half of national canola production^[4].
- Optimizing N fertilizer application is crucial, not only to increase canola yields^[5] and improve nitrogen use efficiency^[6], but to reduce the carbon footprint of canola^[7].
- The study of the optimal N application rate in canola, and potential policies to reduce N₂O

- estimated privately optimal N
- The estimated privately optimal N application rate increased with higher canola variety yield index.
- The estimated privately optimal N rates were significantly higher following cereal or oilseed crops versus pulse crops.
- On average, producers reported applying N near or below the estimated private optimal N rate.
- A direct N₂O tax using the 2030 social cost of carbon of \$0.17/kg CO₂eq is estimated to reduce N rate applied by 19kg/ha from the estimated private optimal N rate which corresponds to a reduction in emissions by 29.8 CO₂eq kg /ha (see Figure 5A).
- In the absence of a regulation or tax, the negative externality of direct N₂O emissions is equal to \$2.54/ha when producers are applying at the private

Producer applying at the estimated optimal N rate (142 kg/ha).

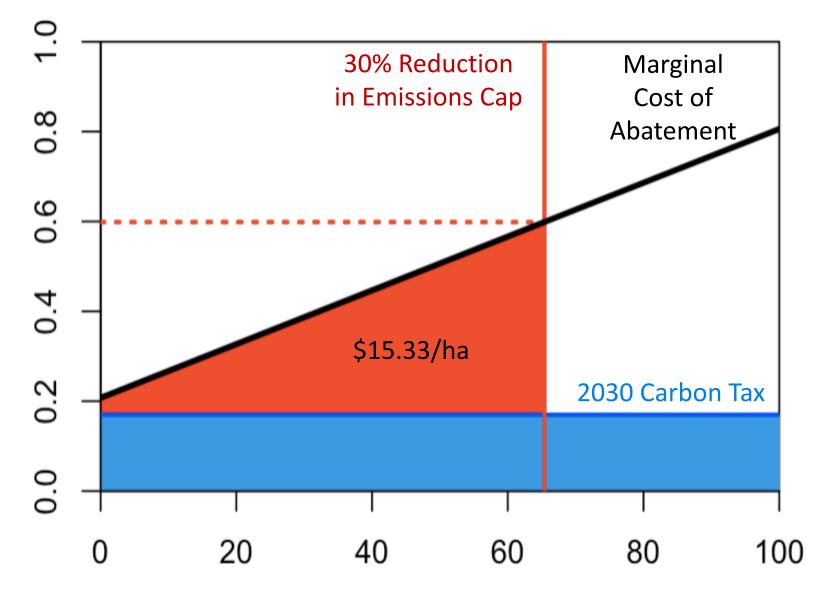
- ^[5] Cutforth, H., McConkey, B., Brandt, S., Gan, Y., Lafond, G., Angadi, S., & Judiesch, D. (2009). Fertilizer N response and canola yield in the semiarid Canadian prairies. *Can. J. Plant Sci.*, 89: 501-503.
- ^[6] Blackshaw, R. E., Hao, H., Brandt, R. N., Clayton, G. W., Harker, K. N., O'Donovan, J. T., . . . Verad, C. L. (2010). Canola response to ESN and urea in a four-year no-till cropping system. *Agron. J.*, 103: 92-99.
- ^[7]Gan, Y., Liang, C., Huang, G., Malhi, S. S., Brandt, S. A., & Katepa-Mupondwa, F. (2011). Carbon Footprint of Canola and Mustard Is a Function of the Rate of N Fertilizer . *The International Journal of Life Cycle Assessment* 17:58-68.
- ^[8] SCIC. (2019). Saskatchewan Crop Insurance Corporation Saskatchewan Management Plus Data.
- ^[9] Environment and Climate Change Canada. (2019). *Historical weather data*. Retrieved March 1, 2021, from https://climate.weather.gc.ca/historical_data/search_histori c_data_e.html
- ^[10] Government of Canada. (2021). Varieties of Crop Kinds Registered in Canada. Retrieved May 10, 2022, from https://inspection.canada.ca/active/netapp/regvar/regvar_l ookupe.aspx
- ^[11] Saskatchewan Ministry of Agriculture. (2022). *Saskatchewan Crop Planning Guide Archive*. Retrieved January 2, 2021, from
- https://publications.saskatchewan.ca/#/categories/1412 ^[12] Alberta Agriculture and Forestry. (2019). *Average farm input prices for Alberta.* Retrieved September 1, 2021, from https://www.agric.gov.ab.ca/app21/farminputprices
- ^[13] Rochette, P., Liang, C., Pelster, D., Bergeron, O., Lemke, R., Kroebel, R., . . . Flemming, C. (2018). Soil Nitrous Oxide Emissions from Agricultural Soils in Canada: Exploring Relationships with Soil, Crop and Climatic Variables. . Agriculture, Ecosystems & Environment, 254:69-81.
- ^[14] Saskatchewan Crop Insurance Corporation. (2022). Saskatchewan Grain Risk Zones. Retrieved September 2021,

emissions from nitrogen fertilizer are needed to meet Canada's emission targets.

OBJECTIVES

- Estimate the economic private optimum rate of applied N for Saskatchewan Canola using a large, producer reported field-scale data set.
- Estimate the marginal abatement cost for direct N₂O emissions from N fertilizer application in Saskatchewan.
- Compare an optimal Pigouvian tax on N fertilizer use to a regulated 30% reduction in N fertilizer use for Saskatchewan.

optimal N rate (see Figure 5A).


A regulated 30% reduction in direct N₂O emissions results in a DWL of \$3.84/ha with a marginal cost of abatement of \$0.386/kg (Figure 5A).

2eq)

- When a producer is applying N at the observed rate in 2019 (underapplying by 23 kg ha⁻¹ relative to the private optimal N rate) the DWL of a regulated 30% reduction in emissions is \$15.33/ha (see Figure 5B).
- Due to lower direct emissions associated with N application in the brown soil zone, the N₂O abatement costs in the brown soil zone are greater relative to the black soil zone

B Producer applying at the average rate in 2019 (119kg/ha).

Reduction in GHG Emissions (CO2 eq kg/ha)

from https://www.scic.ca/resources/sask-management-plus

CONTACT

Michelle Ross MSc Candidate Thesis Advisor Dr. Richard Gray Agriculture and Resource Economics University of Saskatchewan michelle.ross@usask.ca

FUNDING

Advancing Agriculture through Research